Thermal Conductivity of Water Based Nanofluids Containing Decorated Multi Walled Carbon Nanotubes with Different Amount of TiO2 Nanoparticles
Authors
Abstract:
In this paper, we report for the first time, thermal conductivity behavior of nanofluids containing decorated MWCNTs with different amount of TiO2 nanoparticles. TEM image confirmed that the outer surface of MWCNTs successfully decorated with TiO2 nanoparticles. The results of thermal conductivity behavior of nanofluids revealed that the thermal conductivity and enhancement ratio of thermal conductivity of MWCNTsTiO2 at different amount of TiO2 nanoparticles are higher than those of TiO2 and MWCNTs nanofluids. Temperature and weight fraction dependence study also shows that the thermal conductivity of all nanofluids increases with temperature and weight fraction. However, the influence of temperature is more significant than that of weight fraction. We also found that decreasing amount ofTiO2 nanoparticles which introduce the outer surface of MWCNTs leads to the augmentation of thermal conductivity of nanofluids containing MWCNTs-TiO2.
similar resources
The thermal conductivity investigation of nanofluids containing decorated Ag nanorods with Cu nanoparticles using statistical method
In this paper, we investigated the statistical analysis of thermal conductivity of nanofluids containing of decorated Ag nanorods with Cu nanoparticles. For this purpose Ag-Cu hybrid is synthesized and characterized using transmission electron microscopy (TEM) and X-ray diffraction pattern (XRD). TEM image shows that Cu nanoparticles successfully decorate on the outer surface of Ag nanorods. Th...
full textThermal conductivity of single-walled carbon nanotubes
We have measured the temperature-dependent thermal conductivity k(T) of crystalline ropes of singlewalled carbon nanotubes from 350 K to 8 K. k(T) decreases smoothly with decreasing temperature, and displays linear temperature dependence below 30 K. Comparison with electrical conductivity experiments indicates that the room-temperature thermal conductivity of a single nanotube may be comparable...
full textThermal conductivity of single-walled carbon nanotubes
Alexander V. Savin,1,2 Bambi Hu,3,4 and Yuri S. Kivshar1 1Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia 2Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia 3Department of Physics and Center for Nonlinear Studies, Hong Kong Baptist Un...
full textAntibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles
Recently, various nanoscale materials, including silver (Ag) nanoparticles, have been actively studied for their capacity to effectively prevent bacterial growth. A critical challenge is to enhance the antibacterial properties of nanomaterials while maintaining their biocompatibility. The conjugation of multiple nanomaterials with different dimensions, such as spherical nanoparticles and high-a...
full textAn experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes
Recently, there has been considerable interest in the use of nanofluids for enhancing thermal performance. It has been shown that carbon nanotubes (CNTs) are capable of enhancing the thermal performance of conventional working liquids. Although much work has been devoted on the impact of CNT concentrations on the thermo-physical properties of nanofluids, the effects of preparation methods on th...
full textSurveying and Comparing Thermal Conductivity and Physical Properties of Oil Base NanoFluids Containing Carbon and Metal Oxide Nanotubes
In this research, nano materials with tubular structures are added to SAE 20W50 engine oil to study the rate of their effects on the properties of engine oil. Multi-walled carbon nanotubes (MWCNTs) and vanadium oxide nanotubes (VONTs) has been used as two different additive materials, one of them is carbonic and the other is metallic oxides and their effect on different parameters contain...
full textMy Resources
Journal title
volume 12 issue 1
pages 30- 40
publication date 2015-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023